961

Preparation, and Mechanism of Formation, of Alkyl and Phenyl Complexes of Ruthenium(II)

By Christopher F. J. Barnard, J. Anthony Daniels, and Roger J. Mawby,* Department of Chemistry, The University of York, Heslington, York YO1 5DD

New alkyl and phenyl complexes [$Ru(CO)_2L_2CIR$] (L = PMe_2Ph or PMePh_2; R = Me, Et, or Ph) have been prepared by reaction of the all-trans- or all-cis-isomers of [Ru(CO)₂L₂Cl₂] with HgR₂ or SnMe₄: the cis-isomers of [Ru(CO)₂L₂Cl₂] do not react with these reagents. Mechanisms for the reactions, involving initial dissociation of a carbonyl ligand, are proposed on the basis of information about their stereochemistry and kinetics, and studies of halide-exchange reactions of all-trans-[Ru(CO)2(PMe2Ph)2Cl2] with bromide and iodide ion. In the case of reactions between [Ru(CO)(PMe2Ph)3Cl2] and HgR2, in which complexes [Ru(CO)(PMe2Ph)3ClR] are formed as intermediates, the transfer of alkyl or phenyl ligand between mercury and ruthenium has been found to be reversible.

ALKYL complexes of ruthenium(II) have been postulated as intermediates in a number of reactions of organic compounds which involve the use of ruthenium compounds as catalysts or reactants. Examples are the hydrogenation,¹⁻³ isomerization,^{2,4} hydration,⁵ and dimerization⁶ of olefins, and the decarbonylation of

¹ P. S. Hallman, B. R. McGarvey, and G. Wilkinson, J. Chem.

aldehydes.⁷ Aryl complexes of ruthenium (oxidation state unspecified) have been proposed as intermediates in the reaction of arylmercury compounds with olefins in the presence of RuCl₃.⁸ The only direct evidence for the presence of alkyl or aryl complexes of ruthenium in

- ⁵ B. R. James and J. Louie, *Inorg. Chim. Acta*, 1969, 3, 568.
 ⁶ J. D. McClure, R. Owyang, and L. H. Slaugh, *J. Organometallic Chem.*, 1968, 12, P8.
 - ⁸ R. H. Prince and K. A. Raspin, J. Chem. Soc. (A), 1969, 612.
 ⁸ R. F. Heck, J. Amer. Chem. Soc., 1968, **90**, 5518.

J. Soc. (A), 1968, 3143.
 ^a D. Rose, J. D. Gilbert, R. P. Richardson, and G. Wilkinson, J. Chem. Soc. (A), 1969, 2610.
 ^a J. Halpern, J. F. Harrod, and B. R. James, J. Amer. Chem.

Soc., 1966, 88, 5150.

⁴ P. Abley and F. T. McQuillin, Discuss. Faraday Soc., 1968, 46, 31.

these systems, however, was the observation by n.m.r. spectroscopy of species believed to contain an ethyl group bonded to ruthenium when olefin hydrogenation catalysts such as [Ru(PPh₃)₃ClH] were treated with C₂H₄ under pressure: these species could not be isolated.1,2

We decided to attempt the preparation of alkyl and aryl complexes of ruthenium(II) which might serve as models for the proposed catalytic intermediates. Most of these intermediates are portrayed as species containing simple unidentate ligands such as halide ions and ligands containing group 5 donor atoms, and the aim was to obtain complexes of this general type. Most known alkyl and aryl complexes of ruthenium(II) did not appear to be suitable. Thus, in view of the apparent need in catalytic processes for vacant (or easily vacated) co-ordination sites on the metal, the complexes $[Ru(L-L)_2ClR]$ and $[Ru(L-L)_2R_2]$ (R = alkyl or aryl, L-L = bidentate phosphorus ligand) seemed unsuitable because four of the sites are taken up by the firmly held phosphorus ligands.⁹ Complexes containing π -cyclopentadienyl¹⁰ and π -benzene¹¹ ligands were ignored because the aromatic ligand may severely modify the properties of the metal, and various ortho-metallation products 12,13 were ruled out because the chelation of the alkyl or aryl group to the metal may drastically affect its behaviour.

One complex described in the literature ¹⁴ which did appear suitable as a model was [Ru(CO)₂(PPh₃)₂IMe]: the results of our unsuccessful attempts to prepare this complex by the literature method {oxidative addition of MeI to $[Ru(CO)_3(PPh_3)_2]$ have been described elsewhere.¹⁵ We then turned to the possibility of preparing complexes of the general type [Ru(CO)₂L₂ClR] or $[Ru(CO)_{2}L_{2}R_{2}]$ (L = ligand with phosphorus donor atom, R = alkyl or phenyl) by treating complexes [Ru(CO)₂L₂Cl₂] with anionic alkylating and arylating agents. This paper gives the results of these and related reactions, and discusses the mechanism of formation of the complexes which were obtained.

RESULTS AND DISCUSSION

(1) Preparation of Complexes $[Ru(CO)_2L_2CIR]$ (R = Alkyl or Phenyl).—Our first attempts involved the use of the cis-isomers of complexes [Ru(CO)₂L₂Cl₂]¹⁶ (for structures, see Scheme 1). Lupin and Shaw¹⁷ have shown that the Ru-Cl stretching frequencies for chloride ligands trans to carbonyl ligands in ruthenium(II) complexes are relatively low (311-266 cm⁻¹), implying that the Ru-Cl bonds are fairly weak. In addition, these complexes are known 16,18 to undergo exchange with bromide or iodide ion X⁻ to form cis-[Ru(CO)₂L₂X₂].

- J. Chatt and R. G. Hayter, J. Chem. Soc., 1963, 6017.
 A. Davidson, J. A. McCleverty, and G. Wilkinson, J. Chem. Soc., 1963, 1133. ¹¹ R. A. Zelonka and M. C. Baird, J. Organometallic Chem.,
- 1972, 44, 383.
- ¹² G. W. Parshall, W. H. Knoth, and R. A. Schunn, J. Amer. Chem. Soc., 1969, 91, 4990. ¹³ M. A. Bennett, G. B. Robertson, I. B. Tomkins, and P. O.
- Whimp, J. Organometallic Chem., 1971, 32, C19.

Despite this, we were unable to obtain alkyl complexes from the reaction of compounds $cis[Ru(CO)_2L_2Cl_2]$ $(L = PMe_2Ph, PMePh_2, or PPh_3)$ with Grignard reagents or lithium alkyls, nor was there any reaction between cis-[Ru(CO)₂(PMe₂Ph)₂Cl₂] and either HgMe₂ or HgPh.

Having discovered convenient routes to the all-transand all-cis-isomers of complexes [Ru(CO), L₂Cl₂]¹⁶ we decided to try these as alternative starting materials. The all-trans-isomers seemed unpromising, since the Ru-Cl stretching frequencies for ruthenium(II) complexes containing a pair of mutually trans chloride ligands are fairly high (347-299 cm⁻¹).¹⁷ Nevertheless, the complex all-trans-[Ru(CO)₂(PMe₂Ph)₂Cl₂] was found to react with HgMe₂ in acetone. Removal of the solvent followed by column chromatography yielded a product shown by elemental analysis to be [Ru(CO)₂-(PMe₂Ph)₂ClMe]. Despite the use of a large excess of HgMe, there was no evidence for the formation of $[Ru(CO)_2(PMe_2Ph)_2Me_2]$. The crude product was somewhat contaminated with cis-[Ru(CO)₂(PMe₂Ph)₂Cl₂]: the extent of contamination decreased as the excess of HgMe, used in the preparation was increased.

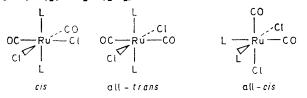
Details of the i.r. and n.m.r. spectra of [Ru(CO)₂-(PMe₂Ph)₂ClMe] (and all other new complexes described in the paper) are given in Table 1. It can be seen that

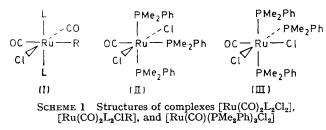
TADTE	7
IABLE	

				-
Lr ^a and	n.m.r.º	spectra	of new	complexes

1.r." and n.m.r." spectra of new complexes			
Complex	$\nu_{\rm C-0}/{\rm cm^{-1}}$	δ/p.p.m.	Assignment
$[\mathrm{Ru}(\mathrm{CO})_2(\mathrm{PMe}_2\mathrm{Ph})_2\mathrm{ClMe}]$	2 025, 1 955	1.64 (t, 6) 1.51 (t, 6) 0.33 (t, 3)	PMe₂Ph RuMe
$[\mathrm{Ru}(\mathrm{CO})_2(\mathrm{PMe}_2\mathrm{Ph})_2\mathrm{ClEt}]$ °	2 020, 1 948	$\begin{array}{c} 2.25 \ (q, 2) \\ 1.61 \ (t, 6) \\ 1.56 \ (t, 6) \\ 0.19 \ (t, 3) \\ \end{array}$	$RuCH_2CH_3$ PMe_2Ph $RuCH_2CH_3$
$[\mathrm{Ru}(\mathrm{CO})_{2}(\mathrm{PMe}_{2}\mathrm{Ph})_{2}\mathrm{ClPh}]$	2 035, 1 958	$1.48 (t, 6) \\ 1.21 (t, 6) brace$	$\mathbf{P}Me_{2}\mathbf{P}\mathbf{h}$
$[\mathrm{Ru}(\mathrm{CO})_2(\mathrm{PMePh}_2)_2\mathrm{ClMe}]$ ^c	2 030, 1 960		
$[Ru(CO)_2(PMePh_2)_2ClPh]$	2 035, 1 962	1.69 (t)	$PMePh_2$
$[Ru(CO)(PMe_3Ph)_3ClPh]$	1 915	1.36 (t, 6) 1.20 (t, 6) 1.07 (d, 6)	$\mathrm{P}Me_{2}\mathrm{Ph}$ $\mathrm{P}Me_{2}\mathrm{Ph}$

^a In acetone solution. Details are given for the C-O stretching region only. ⁶ In benzene solution. Resonances due to phenyl protons are not included. Multiplicities and relative areas are given in parentheses after the chemical shift values: d = doublet, t = triplet, and q = quartet. • Not isolated in a pure state. • Further splitting due to coupling to the phosphorus nuclei can be observed.


the carbonyl ligands must be mutually cis and the PMe,Ph ligands mutually trans, but that the Ru-P bonds do not lie in a plane of symmetry through the


14 J. P. Collman and W. R. Roper, Adv. Organometallic Chem., 1968, 7, 53.

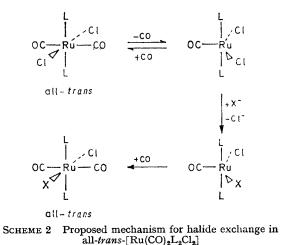
¹⁵ J. Jeffery and R. J. Mawby, J. Organometallic Chem., 1972, 40, C42.

- ¹⁶ C. F. J. Barnard, J. A. Daniels, J. Jeffery, and R. J. Mawby, J.C.S. Dalton, preceding paper. ¹⁷ M. S. Lupin and B. L. Shaw, J. Chem. Soc. (A), 1968, 741.
- ¹⁸ J. M. Jenkins, M. S. Lupin, and B. L. Shaw, J. Chem. Soc. (A), 1966, 1787.

molecule. The structure of the complex must therefore be (I) (see Scheme 1), where $L = PMe_2Ph$ and R = Me, and can be seen to match that of *cis*-[Ru(CO)₂-(PMe_2Ph)₂Cl₂]—from which it cannot be made—rather than that of the actual starting material, all-*trans*-[Ru(CO)₂(PMe_2Ph)₂Cl₂].

The complex $[Ru(CO)_2(PMe_2Ph)_2ClPh]$ was prepared in the same way using HgPh₂, and also assigned structure (I) on the basis of its i.r. and n.m.r. spectra. In this reaction, it was not necessary to use a large excess of HgPh₂ to avoid contamination of the product by *cis*-[Ru(CO)₂(PMe₂Ph)₂Cl₂]; even when excess was used, however, no replacement of the second chloride ligand occurred. Reaction of all-*trans*-[Ru(CO)₂(PMe₂Ph)₂Cl₂] with HgEt₂ yielded a species which could not be isolated in a pure state, but appears from its i.r. and n.m.r. spectra to be [Ru(CO)₂(PMe₂Ph)₂ClEt]. Finally, it was discovered that the complex [Ru(CO)₂(PMe₂Ph)₂ClMe] could also be prepared from all-*trans*-[Ru(CO)₂(PMe₂Ph)₂-Cl₂] and SnMe₄.

The related complex all-trans- $[Ru(CO)_2(PMePh_2)_2Cl_2]$ was found to react with HgPh₂ to give $[Ru(CO)_2-(PMePh_2)_2ClPh]$. Preparation of the analogous methyl complex, using HgMe₂, was complicated by the simultaneous formation of cis- $[Ru(CO)_2(PMePh_2)_2Cl_2]$; the desired product was not obtained in a pure state but was characterized by i.r. spectroscopy.


The study was then extended to the reactions of the complexes all-*cis*- $[Ru(CO)_2L_2Cl_2]$ ($L = PMe_2Ph$ or PMePh₂) with HgMe₂ and HgPh₂ in acetone solution. Again the products were mono-methyl and -phenyl complexes $[Ru(CO)_2L_2ClR]$; contamination by *cis*- $[Ru(CO)_2L_2Cl_2]$ was not a problem with HgPh₂ but was serious for the reactions with HgMe₂, and again $[Ru(CO)_2(PMePh_2)_2CIMe]$ could not be obtained in a pure state. The most surprising feature of these reactions was that the structure of the products was the same [i.e. (I)] as that of those obtained using all-*trans*- $[Ru(CO)_2L_2Cl_2]$; comparison of structure (I) with that of the starting materials all-*cis*- $[Ru(CO)_2L_2Cl_2]$ reveals that the reactions involve a marked change in stereo-chemistry.

Major points of mechanistic interest arising from these preparations are: (a) the relative reactivity of the three isomers of the complexes $[Ru(CO)_2L_2Cl_2]$ towards organo-mercury compounds (in particular the fact that the all-trans complexes are so much more reactive than the *cis*); (b) the changes in stereochemistry which accompany the reactions; (c) the exclusive formation of mono-alkyl and -phenyl complexes.

We felt that a study of the simpler halide exchange reactions of the isomers of $[Ru(CO)_2(PMe_2Ph)_2Cl_2]$ with bromide and iodide ion might cast some light on these points.

(2) Mechanistic Evidence from Halide-exchange Reactions.—Contrary to initial expectations (see above), we found that all-trans-[Ru(CO)₂(PMe₂Ph)₂Cl₂] reacts with bromide or iodide ion under much milder conditions than those necessary to convert cis-[Ru(CO)₂-(PMe₂Ph)₂Cl₂] into its bromo- and iodo-analogues.^{16,18} This 'unexpected' result is in line with the relative reactivity of the two isomers towards organomercury compounds (but two awkward features, which will be considered later, are that the halide-exchange reactions —unlike those with HgR₂—proceed with retention of the all-trans-stereochemistry and with replacement of both chloride ligands). Clearly, then, the strength of the Ru–Cl bonds is not of primary importance in either type of reaction.

It was noted that the relative reactivity of the *cis*- and all-*trans*-isomers towards halide exchange parallels that for carbonyl-substitution reactions,¹⁶ suggesting that the first step in halide exchange in *trans*-[Ru(CO)₂-(PMe₂Ph)₂Cl₂] might actually be loss of a carbonyl ligand. If so, one would expect the exchange to be

inhibited by the presence of free CO in the solution, and this was found to be the case. Initial loss of a carbonyl ligand, as shown in Scheme 2 ($L = PMe_2Ph$; X = Bror I), presumably allows halide exchange to occur by an $S_N 2$ mechanism; overall retention of stereochemistry is to be expected because uptake of CO in the final step will occur preferentially *trans* to the remaining carbonyl ligand because its *trans*-directing influence is greater than that of halide ions (see discussion in ref. 16). A second exchange can be effected in the same way.

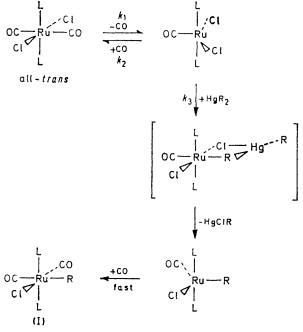
(3) Mechanism of Formation of Complexes [Ru(CO)₂-L₂CIR].-It now seemed likely that the reactions of the complexes all-trans-[Ru(CO)₂L₂Cl₂] with organomercury compounds would also involve loss of a carbonyl ligand as a first step. Tests for inhibition by CO were carried out on the reactions of all-trans-[Ru(CO)₂(PMe₂Ph)₂Cl₂] with HgMe₂ and HgPh₂. In both cases the reaction rate was greatly reduced by saturating the solution with CO.

It was decided that a kinetic study should be made of the reactions, and to avoid the complication of variation in CO concentration in the solution during the reactions (and possible loss of a little CO from solution) the study was carried out using solutions saturated with CO under an atmosphere of CO. The inhibition by CO necessitated the use of higher temperatures, and hence a change of solvent from that-acetone-used for most of the preparative work. Unfortunately the inhibition was so severe in the case of the reaction with HgMe, that, even using a very large excess of HgMe2, the rearrangement of all-trans-[Ru(CO)₂competing (PMe₂Ph)₂Cl₂] to the *cis*-isomer became a major complication. In addition, [Ru(CO)₂(PMe₂Ph)₂ClMe] itself reacts rapidly with CO to form [Ru(CO)₂(PMe₂Ph)₂Cl-(COMe)]. For these reasons, the study of the reaction with HgMe₂ was abandoned.

The reaction, under CO, of all-trans-[Ru(CO)₂-(PMe₂Ph)₂Cl₂] with HgPh₂, however, yielded only [Ru(CO)₂(PMe₂Ph)₂ClPh] in each of the solvents used. In all cases the concentration of HgPh₂ was much greater than that of the ruthenium complex, and could be assumed to remain effectively constant throughout a given run. The reaction was found to be first-order in all-trans-[Ru(CO)₂(PMe₂Ph)₂Cl₂], and values of the first-order rate constant, k_{obs} , for various different concentrations of HgPh₂ are collected in Table 2. From

TABLE 2

Observed rate constants for the reaction of the all-transand all-cis-isomers of [Ru(CO)₂(PMe₂Ph)₂Cl₂] with HgPh, a


82		511~10h 17	104 5 /
Isomer	Solvent ^b	[HgPh ₂]/ mol dm ⁻³	$\frac{10^4 k_{obs}}{s^{-1}}$
all-trans °	Nitroethane	0.050	3.07
		0.100	6.09
		0.150	9.36
		0.200	12.80
	Cyclohexanone	0.150	7.93
	Chlorobenzene	0.150	14.28
all-cis d	Nitroethane	0.050	2.17
		0.100	3.47
		0.200	6.41
	Cyclohexanone	0.100	5.24
	Chlorobenzene	0.100	8.15

^a Initial concentration of $[Ru(CO)_2(PMe_2Ph)_2Cl_2]$ ca. 5 × 10⁻³ mol dm⁻³, ^b Dielectric constants at 293 K: nitroethane, 19.7; cyclohexanone, 18.2; chlorobenzene 5.94. ^c At 343.0 K. ^d At 333.0 K.

the data for nitroethane as solvent it can be seen that the reaction is also first-order in HgPh₂. Although the three solvents chosen for the study vary widely in

dielectric constant, there is little variation in reaction rate.

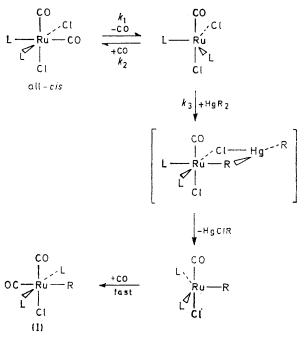
A mechanism compatible with all the evidence is shown in Scheme 3, where R = Ph and $L = PMe_2Ph$.

SCHEME 3 Proposed mechanism for reactions between complexes all-trans-[Ru(CO)₂L₂Cl₂] and HgR₂

Using the steady-state approximation for the concentration of the intermediates, the rate expression is:

$$\frac{-\mathrm{d}[\mathrm{all}\text{-}trans]}{\mathrm{d}t} = \frac{k_1k_3[\mathrm{all}\text{-}trans][\mathrm{HgR}_2]}{k_2[\mathrm{CO}] + k_3[\mathrm{HgR}_2]}$$

This expression fits the observed first-order dependence on the concentration of all-trans-[Ru(CO)₂(PMe₂Ph)₂Cl₂], and also that on the concentration of HgPh₂, provided that $k_2[CO]$ can be assumed to be much larger than $k_3[HgR_2]$ (R = Ph). In view of the dramatic effect of CO on the reaction rate, this seems a reasonable assumption to make.


In that it does not involve the formation of ionic species as intermediates, the mechanism in Scheme 3 fits the observed lack of sensitivity of the reaction rate to the dielectric constant of the solvent. It also explains the change in stereochemistry during the reaction: when CO re-enters in the last step it does so trans to the phenyl or alkyl ligand since this is now the ligand with the greatest trans-effect.¹⁹ This can be compared with the situation for the halide-exchange reactions (see Scheme 2), in which there is no change in stereochemistry.

The reactions of all-cis-[Ru(CO)₂(PMe₂Ph)₂Cl₂] with HgPh₂ and HgMe₂ show similar kinetic behaviour. Both are inhibited by CO, and a kinetic study of the reaction with HgPh₂ under an atmosphere of CO showed it to be first-order in all-cis-[Ru(CO)₂(PMe₂Ph)₂Cl₂], the

¹⁹ R. Mason and A. D. C. Towl, J. Chem. Soc. (A), 1970, 1601.

observed rate constant increasing with the concentration of HgPh₂ (see Table 2). The mechanism drawn in Scheme 4 (L = PMe₂Ph, R = Ph) fits the kinetic data and explains the unexpected change in stereochemistry during the reaction. Initial loss of the carbonyl ligand *trans* to PMe₂Ph rather than that *trans* to Cl⁻ is to be expected on the basis both of relative *trans*-effects ¹⁸ and of observations on the stereochemistry of carbonyl-substitution reactions of these complexes.¹⁶ In the final step, the carbonyl ligand re-enters *trans* to the phenyl or alkyl ligand because these ligands possess a greater *trans*-effect than PMe₂Ph.¹⁹

(4) Reaction between $[Ru(CO)(PMe_2Ph)_3Cl_2]$ and HgR_2 (R = Alkyl or Phenyl).—Two isomers of $[Ru(CO)-(PMe_2Ph)_3Cl_2]$ [structures (II) and (III) in Scheme 1] are known.¹⁸ Of these, only isomer (II) reacts with

SCHEME 4 Proposed mechanism for reactions between complexes all-cis-[Ru(CO)₂L₂Cl₂] and HgR₂

compounds HgR_2 . I.r. (in acetone solution) and n.m.r. (in benzene solution) studies of the reaction between (II) and $HgPh_2$ revealed that a new species was formed in the solution, but that this in turn was converted into the unreactive isomer (III) of $[Ru(CO)-(PMe_2Ph)_3Cl_2]$. The intermediate, which could not be obtained in a pure state, was identified as $[Ru(CO)-(PMe_2Ph)_3ClPh]$ by comparison of its i.r. and n.m.r. spectra with those of a fully characterized sample of this compound prepared from $[Ru(CO)_2(PMe_2Ph)_2ClPh]$ and PMe_2Ph .

It seemed probable that the intermediate was converted into (III) by reaction with HgClPh formed in the first step of the reaction, and this was confirmed by treating the isolated sample of $[Ru(CO)(PMe_2Ph)_3ClPh]$ with HgClPh.

Overall, therefore, the reaction is simply the isomeriz-

ation of (II) to (III), catalysed by $HgPh_2$ (in the absence of $HgPh_2$, the same conversion requires strong heating ¹⁸). I.r. studies of the reactions of (II) with $HgMe_2$ and $HgEt_2$ indicated that they follow similar paths, with ultimate conversion into (III) *via* intermediate alkyl complexes.

The most important feature of these reactions is that they demonstrate the reversibility of the transfer of the organic ligand between mercury and ruthenium. Reverting to the reactions of complexes $[Ru(CO)_2L_2Cl_2]$, this may help to explain why no dialkyl or diphenyl complexes of ruthenium could be obtained, despite the fact that the remaining chloride ligand in $[Ru(CO)_2 (PMe_2Ph)_2ClPh]$ could be replaced by iodide ion under mild conditions {and the earlier observation that both chloride ligands in all-trans- $[Ru(CO)_2(PMe_2Ph)_2Cl_2]$ could be replaced by bromide or iodide}. There must be an appreciable change in the electron density on the metal when the first alkyl or phenyl ligand is introduced, and this may make the equilibrium position in a second exchange very unfavourable.

EXPERIMENTAL

All preparative work was carried out under an atmosphere of dry nitrogen. I.r. spectra were recorded on a Perkin-Elmer 257 grating spectrophotometer, n.m.r. spectra on a Varian A60A 60 MHz spectrometer, using a V-6057 variabletemperature accessory, and analytical data were obtained with a Perkin-Elmer 240 elemental analyser.

Preparation of Complexes.—Details of the preparation of the cis-, all-trans-, and all-cis-isomers of complexes $[Ru(CO)_2L_2Cl_2]$ (L = ligand with phosphorus donor atom) have been given in an earlier paper, as have those for the preparation of isomers (II) and (III) of $[Ru(CO)(PMe_2Ph)_3-Cl_2]$.¹⁶ HgMe₂ and HgEt₂ were prepared as described in the literature.²⁰ HgPh₂ and SnMe₄ were obtained from Koch-Light and Emanuel respectively.

Complexes $[Ru(CO)_2L_2CIR]$.--[Ru(CO)_2(PMe_2Ph)_2CIMe]. To a solution of all-trans-[Ru(CO)₂(PMe₂Ph)₂Cl₂] (0.10 g) in acetone (15 ml) was added HgMe₂ (0.46 g). After 4 h at 313 K, the solvent as removed under reduced pressure. The residue was purified by column chromatography on alumina, using CHCl₃ as eluant, and recrystallized from light petroleum (b.p. 313-333 K) at 273 K. Colourless crystals were obtained (m.p. 365-368 K, yield 66%) (Found: C, 46.9; H, 5.25. Calc. for $C_{19}H_{25}ClO_2P_2Ru$: C, 47.16; H, 5.21%). Use of all-cis-[Ru(CO)₂(PMe₂Ph)₂Cl₂] in place of the all-trans-isomer yielded the same product (reaction time 7 h), but the extent of contamination of the crude product by cis-[Ru(CO)₂(PMe₂Ph)₂Cl₂] was greater, making purification more difficult. In the preparation of [Ru(CO)₂(PMe₂Ph)₂ClMe] from the all-trans-isomer, SnMe₄ (0.50 g) could be used instead of HgMe₂, with a reaction time of 5 h (yield 60%).

 $[\operatorname{Ru}(\operatorname{CO})_2(\operatorname{PMePh}_2)_2\operatorname{ClMe}]$. The procedure was the same as that above, using all-*trans*- $[\operatorname{Ru}(\operatorname{CO})_2(\operatorname{PMePh}_2)_2\operatorname{Cl}_2]$ (0.09 g) and a reaction time of 5 h. Even after chromatography and recrystallization, the product was still slightly impure, but was assumed to be $[\operatorname{Ru}(\operatorname{CO})_2(\operatorname{PMePh}_2)_2\operatorname{ClMe}]$ since its i.r. spectrum was similar to that of $[\operatorname{Ru}(\operatorname{CO})_2$ - $(\operatorname{PMe}_2\operatorname{Ph})_2\operatorname{ClMe}]$. Similar purification problems were ²⁰ C. S. Marvel and V. L. Gould, J. Amer. Chem. Soc., 1922, 44, 153. encountered in its preparation from all-cis-[Ru(CO)₂-(PMePh₂)₂Cl₂].

 $[\operatorname{Ru}(\operatorname{CO})_2(\operatorname{PMe}_2\operatorname{Ph})_2\operatorname{ClPh}].$ The complex all-trans- $[\operatorname{Ru}(\operatorname{CO})_2(\operatorname{PMe}_2\operatorname{Ph})_2\operatorname{Cl}_2]$ (0.10 g) and HgPh_2 (0.07 g) were stirred in acetone (15 ml) at 313 K for 8 h. The product was purified in the same way as the analogous methyl complex, to give colourless crystals (m.p. 376-378 K, yield 65%) (Found: C, 52.35; H, 5.05. Calc. for $C_{24}H_{27}ClO_2P_2Ru: C, 52.80; H, 4.98\%$). The same product was obtained using all-cis-[Ru(CO)2(PMe2Ph)2Cl2] in place of the all-trans-isomer, the reaction being carried out at 298 K (reaction time 3 h, yield 75%). These methods could also be used to prepare [Ru(CO), (PMePh,), ClPh], starting with 0.12 g of all-trans- or all-cis-[Ru(CO)₂(PMePh₂)₂Cl₂]. The product was obtained as colourless crystals (m.p. 423-427 K, yields 45 and 65% respectively) (Found: \overline{C} , 60.95; H, 4.75. Calc. for C₃₄H₃₁ClO₂P₂Ru: C, 60.94; H, 4.66%).

 $[\operatorname{Ru}(\operatorname{CO})_2(\operatorname{PMe}_2\operatorname{Ph})_2\operatorname{ClEt}]$. To a stirred solution of alltrans- $[\operatorname{Ru}(\operatorname{CO})_2(\operatorname{PMe}_2\operatorname{Ph})_2\operatorname{Cl}_2]$ (0.10 g) in acetone (15 ml) was added HgEt₂ (0.50 g). After 2 h at 313 K, the i.r. spectrum of the solution indicated that the desired complex had been formed, but it could not be isolated in a pure state. Further evidence for the formation of $[\operatorname{Ru}(\operatorname{CO})_2(\operatorname{PMe}_2\operatorname{Ph})_2\operatorname{ClEt}]$ was obtained by monitoring the reaction, in benzene solution, by n.m.r. spectroscopy.

[Ru(CO)(PMe₂Ph)₃ClPh]. A solution of [Ru(CO)₂-(PMe₂Ph)₂ClPh] (0.10 g) and PMe₂Ph (0.03 g) in acetone (25 ml) was heated under reflux for 1 h. Removal of the solvent under reduced pressure left a colourless oil which became crystalline when triturated with light petroleum (b.p. 313—333 K). Recrystallization from light petroleum (b.p. 353—373 K) gave colourless *crystals* (m.p. 403—408 K, yield 77%) (Found: C, 56.95; H, 5.7. Calc. for C₃₁H₃₈-ClOP₃Ru: C, 56.75; H, 5.84).

Reaction of [Ru(CO)(PMe₂Ph)₃Cl₂] with HgPh₂. Isomer

(II) of $[Ru(CO)(PMe_2Ph)_3Cl_2]$ (0.31 g) and HgPh₂ (0.18 g) were heated under reflux in acetone (30 ml). I.r. spectra of the solution indicated that the complex $[Ru(CO)-(PMe_2Ph)_3ClPh]$ (identified by comparison with a sample prepared as above) was formed but then reacted further to form isomer (III) of $[Ru(CO)(PMe_2Ph)_3Cl_2]$, which was isolated from the solution and fully characterized. These conclusions were confirmed by a parallel study, by n.m.r. spectroscopy, of the reaction in benzene solution.

I.r. studies of the reactions of $[Ru(CO)(PMe_2Ph)_3Cl_2]$ with HgMe₂ (0.35 g) or HgEt₂ (0.39 g) showed that they followed a similar course.

Halide-exchange Studies.—Solutions of all-trans-[Ru(CO)₂-(PMe₂Ph)₂Cl₂] (0.10 g) in acetone (10 ml) were stirred with LiBr (0.17 g) or NaI (0.30 g) at 313 K. After 16 h the solutions were filtered and the solvent removed under reduced pressure. The products were extracted with benzene and recrystallized from acetone. Analysis and spectroscopic data confirmed that these were the known ¹⁶ complexes, all-trans-[Ru(CO)₂(PMe₂Ph)₂X₂] (X = Br or I).

Kinetic Studies.—The reactions of all-trans- and all-cis-[Ru(CO)₂(PMe₂Ph)₂Cl₂] with HgPh₂ were monitored by following the disappearance of a C-O stretching band characteristic of the starting material (that at ca. 2 000 cm⁻¹ for the all-trans-isomer, and that at ca. 2 075 cm⁻¹ for the all-cis-isomer). Solvents were purified immediately before use and saturated with CO, and the reactions were performed under a CO pressure of 760 mmHg. Linear plots of log(absorbance) against time were obtained for at least $2\frac{1}{2}$ half-lives, and the values given for the observed rate constant in Table 2 were obtained from a least-meansquares treatment of absorbance and time data. Values were found to be reproducible to, at worst, 5%.

We thank the S.R.C. for maintenance grants to C. F. J. B. and J. A. D.

[5/1914 Received, 21st October, 1975]